MORE FUNCTIONS RELATED TO NANO JD OPEN SETS

S. Jackson ¹, T. Gnanapoo Denosha ²

¹ Assistant Professor; PG and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi-8. Affliated to Manonmaniam Sundaranar University, Tamil Nadu, India. Mail Id: jacks.mat@voccollege.ac.in

²Research Scholar, Reg.No: 19212232092023; PG and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi-8. Affliated to Manonmaniam Sundaranar University, Tamil Nadu, India. Mail Id: denosha.mat@voccollege.ac.in

ABSTRACT

We introduce a new sort of Náno JD continuous functions in Náno Topological spaces (M, τ (P)), namely Náno Strongly and Perfectly JD continuous functions in this article. Basic properties of Náno Strongly and Perfectly JD continuous functions are discussed. We establish their interconnection with other pre-exisiting concepts.

1. INTRODUCTION

 $N\acute{ano}$ topology is one of the latest feathers in topology that applies to real life situations. Lellis Thivagar et al. [11] was the main brain behind developing the concept of $N\acute{ano}$ topology. The term $N\acute{ano}$ can be ascribed to anyunit of measure. Followed by which many mathematicians worked towards the generalisations of these sets in $N\acute{ano}$ topological spaces.

A new sort of *Náno* JD continuous functions namely *Náno* JD Perfectly and *Náno* JD Totally Continuous functions are introduced here.

2. PRELIMINARIES

This section establishes basic definitions and theorems related to the study of this article. Throughout this article N_n cl and N_n int represents *Náno* closure and *Náno* interior.

2.1 Definition

If $(M,\tau(P))$ is a *Nano* Topological space with respect to P with $J \subseteq M$. Then J is claimed to be

- 1. Nano semi-open if $J \subseteq N_n cl(N_n int(J))$.
- 2. $N \acute{a} no \text{ pre-open if } J \subseteq N_n int(N_n cl(J))$.
- 3. $N \acute{a} no \alpha$ open if $J \subseteq N_n$ int $(N_n cl(N_n int(J)))$.
- 4. $N \acute{a} no \beta$ open if $J \subseteq N_n cl (N_n int(N_n cl(J)))$.
- 5. $N \acute{a} no$ regular-open if J = N_nint(N_ncl(J)).

2.2 Definition

A function k: $(M,\tau(P)) \rightarrow (N,\tau(Q))$ is called *Náno* perfectly continuous if for each *Náno* open set in $(N,\tau(Q))$ the inverse image is both *Náno* open and *Náno* closed in $(M,\tau(P))$.

2.3 Definition

A function k:(M, $\tau(P)$) \rightarrow (N, $\tau(Q)$) is called *Náno* open if the image of each *Náno* open set in (M, $\tau(P)$) is *Náno* open in (N, $\tau(Q)$).

2.4 Definition

A function k:(M, τ (P)) \rightarrow (N, τ (Q)) is called *Náno* closed if the image of each *Náno* closed

set in (M, τ (P)) is *Náno* closed in (N, τ (Q)).

3.NANO PERFECTLY JD CONTINUOUS FUNCTION

Here we define *Náno* Perfectly JD-Continuous functions and studied their characterizations in *Náno* topological spaces.

3.1 Definition

A function k:(M, $\tau(P)$) \rightarrow (N, $\tau(Q)$) is called a *Náno* perfectly JD continuous if for every *Náno* JD open set in (N, $\tau(Q)$) the inverse image is both *Náno* open and *Náno* closed in (M, $\tau(P)$).

3.2 Theorem

If a map k: $(M, \tau(P)) \rightarrow (N, \tau(Q))$ is *Náno* perfectly JD continuous then it is *Náno* strongly JD continuous.

Proof:

Assume that k is *Náno* perfectly JD continuous. Let J be any *Náno* JD open set in (N, $\tau(Q)$), Since k is *Náno* perfectly JD continuous, k⁻¹(J) is both *Náno* open and *Náno* closed in (M, $\tau(P)$). Therefore k is *Náno* strongly JD continuous.

3.3 Theorem

If a map k:(M, τ (P)) \rightarrow (N, τ (Q)) is *Náno* perfectly JD continuous then it is *Náno* perfectly continuous.

Proof:

Let J be an *Náno* open set in (N, τ (Q)), Since every *Náno* open set is *Náno* JD open set, J is a *Náno* JD open set in (N, τ (Q)). Since k is *Náno* perfectly JD continuous, k⁻¹(J) is both *Náno* open and *Náno* closed in (M, τ (P)). Therefore k is *Náno* perfectly continuous.

3.4 Theorem

A map k:(M, $\tau(P)$) \rightarrow (N, $\tau(Q)$) is *Náno* perfectly JD continuous if and only if k-1(J) is both *Náno* open and *Náno* closed in (M, $\tau(P)$) for every *Náno* JD closed set J in (N, $\tau(Q)$).

Proof:

Let J be any *Náno* JD closed set in (N, τ (Q)). Then J^c is *Náno* JD open in (N, τ (Q)). Since k is *Náno* perfectly JD continuous, k⁻¹(J^c) is both Nano open and Nano closed in (M, τ (P)). But k⁻¹(J) =

 $M\setminus k^{-1}(J)$ and so $k^{-1}(J)$ is both *Náno* open and *Náno* closed in $(M, \tau(P))$. But $k^{-1}(J^c) = M \setminus k^{-1}(J)$ and so $k^{-1}(J)$ is both *Náno* open and *Náno* closed in $(M, \tau(P))$. Let J be any *Náno* JD open set in $(N, \tau(Q))$. Then J^c is *Náno* JD closed in $(N, \tau(Q))$.

By assumption $k-1(J^c)$ is both *Náno* open and *Náno* closed in (M, $\tau(P)$). But $k^{-1}(J^c) = M \setminus k^{-1}(J)$ and so $k^{-1}(J)$ is both *Náno* open and *Náno* closed in (M, $\tau(P)$). Therefore, k is *Náno* perfectly JD continuous.

3.5 Theorem

Let (M, $\tau(P)$) be a discrete *Nano* topological space and (N, $\tau(Q)$) be any *Nano* topological space. The statement below holds true for the map (M, $\tau(P)$) \rightarrow (N, $\tau(Q)$),

(i) k is *Náno* strongly JD continuous.

(ii) k is *Náno* perfectly JD continuous.

Proof :

(i) \Rightarrow (ii) Let J be any *Náno* JD open set in (N, τ (Q)). By hypothesis, k⁻¹(J) is *Náno* open in (M, τ (P)). Since τ (P)) is a discrete *Náno* space, k⁻¹(J) is *Náno* closed in (N, τ (Q)). k⁻¹(J) is both *Náno* open and *Náno* closed in (M, τ (P)). Hence, k is *Náno* perfectly JD continuous.

(ii) ⇒ (i) Let J be any Nano JD open set in (N, τ (Q)). Then, k⁻¹(J) is both *Náno* open and *Náno* closed in (M, τ (P)). Hence, k is *Náno* strongly JD continuous.

3.7 Theorem

Let k: $(M, \tau(P)) \rightarrow (N, \tau(Q))$ and s: $(N, \tau(Q)) \rightarrow (L, \tau(O))$ are *Náno* perfectly JD continuous functions then their composition $s \circ k : (M, \tau(P)) \rightarrow (L, \tau(O))$ is also *Náno* perfectly JD continuous.

Proof:

Let J be a *Náno* JD open set in (L, $\tau(0)$). Since s is *Náno* perfectly JD continuous. We get that $s^{-1}(J)$ is *Náno* open and *Náno* closed in (N, $\tau(Q)$). Then $s^{-1}(J)$ is *Náno* JD open in (N, $\tau(Q)$). Since k is *Náno* perfectly JD continuous, $k^{-1}s^{-1}(J) = (s \circ k^{)-1}$ is both *Náno* open and *Náno* closed in

(M, τ (P)). Hence, s • k is *Náno* perfectly JD continuous.

3.8 Theorem

Let k: (M, $\tau(P)$) \rightarrow (N, $\tau(Q)$) and s: (N, $\tau(Q)$) \rightarrow (L, $\tau(O)$) be any two maps. Then their composition is *Náno* JD continuous if s is *Náno* perfectly JD continuous and k is *Náno* continuous.

Proof:

Let J be any *Náno* JD open set in (L, $\tau(0)$). Then, s⁻¹(J) is both *Náno* open and *Náno* closed in (N, $\tau(Q)$). since k is *Náno* continuous, k⁻¹ (s⁻¹(J)) = (s \circ k)⁻¹(J) is *Náno* open in (M, $\tau(P)$). Hence s \circ k is *Náno* strongly JD continuous.

3.8 Theorem

If a map $k:(M, \tau(P)) \rightarrow (N, \tau(Q))$ is *Náno* perfectly JD continuous and a map s: (N, τ (Q)) \rightarrow (L, τ (O)) is *Náno* strongly JD continuous then their composition is s $\circ k : (M, \tau(P)) \rightarrow (L, \tau(O))$ is *Náno* perfectly JD continuous. Proof :

Let J be any *Náno* JD open set in (L, $\tau(O)$). Then g⁻¹(J) is *Náno* open in (N, $\tau(Q)$). Then g⁻¹(J) is *Náno* JD open in (N, $\tau(Q)$). By hypothesis, k⁻¹(s⁻¹(J)) = (s • k)⁻¹(J) is both *Náno* open and *Náno* closed in (M, $\tau(P)$). Therefore, s • k is *Náno* perfectly JD continuous.

4.NANO TOTALLY JD CONTINUOUS FUNCTION

Here we define *Náno* Totally JD Continuous functions and studied their characterizations in *Náno* topological spaces.

4.1 Definition

A function k: $(M, \tau (P)) \rightarrow (N, \tau(Q))$ is called *Náno* totally JD continuous if the inverse image of every *Náno* open set of $(N, \tau(Q))$ is both *Náno* JD open and *Náno* JD closed set of

(M, τ(P)).

4.2 Example

Let M={g,h,i,j} with M/R= {{g}, {i},{h,j}} and P={g,h}. Then the topology τ (P) = {M, φ , {g}, {g, h, j}, {h, j}}, NJDO(X) = {U, φ , {g}, {h}, {j}, {g, h, j}, {h, i}}, {g, j}, {h, j}, {g, i}, {g, h, i}, {g, h, j}, {h, i, j}, {g, i, j} NJDC(X) = {U, φ , {g}, {h}, {i}, {j}, {g, i, j}} NJDC(X) = {U, φ , {g}, {h}, {i}, {j}, {g, j}, {g, h, {h, i}, {i, j}}, {g, i, j}} NJDC(X) = {U, φ , {g}, {h}, {i}, {j}, {g, j}, {g, h, {h, i}, {i, j}}, {g, i, j}} Let N={g,h,i,j} with N/R'={g,h,j},{i}} and Q={g} \subseteq N. Then τ (Q) = {N, φ , {g, h, j}}. Define k:M \rightarrow N as k(g)=g; k(h)=i; k(i)=j; k(j)=h. Here k is Nano totally JD continuous.

4.3 Theorem

Let a mapping k: (M, $\tau(P)$) \rightarrow (N, $\tau(Q)$), then every *Náno* Totally JD continuous functions is Na´no JD continuous function.

Proof:

Let J be an open set in (N, τ (Q)). Since k is *Nano* totally JD continuous functions,

 $k^{-1}(J)$ is both *Náno* JD open and *Náno* JD closed in (M, $\tau(P)$). Therefore, k is *Náno* JD continuous.

4.4 Remark

Reverse implications need not hold true as evidenced by the illustration below.

4.5 Example

Let $M = \{l,r,w,v\}$ with $M/R = \{\{l\},\{v\},\{r,w\}\}$ and $P = \{l,w\}$. Then the $\tau(P) = \{M, \phi, \{l\}, \{w\}, \{r, w\}, \{l, r, w\}\}$, Then $N = \{l,r,w,v\}$ with $N/R' = \{\{l,v\},\{r\},\{w\}\}\}$ $Q = \{l,w\}$. Then $\tau(Q) = \{N, \phi, \{l,w,v\},\{l,v\},\{w\}\}$. Consider a function $k:M \rightarrow N$ as k(l) = r; k(r) = v; k(w) = w; k(v) = l. Here k is *Náno* JD continuous but not *Náno* totally continuous.

4.6 Theorem

Let a mapping k:(M, τ (P)) \rightarrow (N, τ (Q)), then every *Nano* totally continuous function is *Nano* totally JD continuous. Proof :

Let J be a Náno open set of (N, τ (Q)). Since k is Náno totally continuous function,

 $k^{-1}(J)$ is both *Náno* open and *Náno* closed in (M, τ(P)). Since every *Náno* open set is *Náno* JD open and every *Náno* closed set is *Náno* JD closed. $k^{-1}(J)$ is both *Náno* JD open and *Náno* JD closed in (M, τ(P)). Therefore, k is *Náno* totally JD continuous.

4.7 Remark

Reverse implications need not hold true as evidenced by the illustration below.

4.8 Example

Let $M=\{g,h,i,j\}$ with $M/R=\{\{g\}, \{i\},\{h,j\}\}\)$ and $P=\{g,h\}$. Then the topology $\tau(P) = \{U, \phi, \{g\}, \{g, h, j\}, \{h, j\}\}\)$ Let $N=\{l,r,w,v\}\)$ with $N/R'=\{\{l,r,v\}, \{w\}\}\)$ and $Q=\{l\}$. Then $\tau(Q)=\{N, \phi, \{l, r, v\}\}$. Define $k:M \to N$ as k(g)=l; k(h)=w; k(i)=v; k(j)=r. Here k is *Náno* totally JD continuous but not *Náno* totally continuous

4.9 Theorem

Consider a mapping h:(M, τ (P)) \rightarrow (N, τ (Q)), then every *Nano* perfectly continuous function is *Nano* totally JD continuous function.

Proof:

Let h: $(M, \tau (P)) \rightarrow (N, \tau (Q))$ be a *Náno* perfectly JD continuous map and J be any *Náno* open set in $(N, \tau (Q))$. Then J is *Náno* JD open in $(N, \tau (Q))$. Since h is *Náno* perfectly JD continuous, h⁻¹(J) is both *Náno* open and *Náno* closed in $(M, \tau (P))$, it implies h⁻¹(J) is both *Náno* JD open and *Náno* JD closed in $(M, \tau (P))$. Therefore, h is *Náno* totally JD continuous.

4.10 Remark

Reverse implications need not hold true as evidenced by the illustration below

4.11 Example

Let M={l,r,v,w,i} with M/R= {{l,r}, {v,w},{i}} and P={r,i}. Then the *Náno* topology $\tau(P) = \{M, \phi, \{l, r, i\}, \{l, r\}, \{i\}\},$ Then N={l,r,v,w,i} with N/R'= {{l,r,v}, {i}, {w}} and Q= {r,v,w} . Then $\tau(Q)$ = {N, ϕ , {l,r,v,w}, {w}, {l,r,v}}. Define h:M \rightarrow N as h(l)=r, h(r)=l, h(v)=v, h(w)=w; h(i)=i. Here h is *Náno* Totally JD continuous but not *Náno* perfectly JD continuous.

4.12 Theorem

If h: M x N is a *Náno* totally JD continuous map, and M is *Náno* JD connected, then N is a *Náno* indiscrete space.

Proof:

Let's presume that N is not a *Náno* indiscrete space. And J be a non-empty *Náno* open subset of N. Since, h is *Náno* totally JD continuous map, then $h^{-1}(J)$ is a non-empty *Náno* JD clopen subset of M. Then $M=h^{-1}(J) \cup (h^{-1}(J))^c$. Thus, M is a union of two non empty disjoint *Náno* JD open sets despite the fact that M is *Náno* JD connected this is a contradiction. Therefore, N must be an *Náno* indiscrete space.

4.13 Theorem

Let $h:(M, \tau(P)) \rightarrow (N, \tau(Q))$ and $s: (N, \tau(Q)) \rightarrow (L, \tau(O))$ be a map. Then

(i) If h is *Nano* JD irresolute and s is *Nano* totally JD continuous then $s \circ h$ is *Nano* totally JD continuous.

(ii) If h is *Náno* totally JD continuous and s is *Náno* continuous then s \circ h is *Náno* totally JD continuous.

Proof:

(i) Let J be a *Náno* open set in (L, τ (O)). Since s is *Náno* totally JD continuous, s⁻¹(J) is *Náno* JD clopen in (N, τ (Q)). Since h is *Náno* JD irresolute, h⁻¹(s⁻¹(J)) is *Náno* JD open and *Náno* JD closed in M. Since (s \circ h)⁻¹(J) = h⁻¹(s⁻¹(J)). Therefore, s \circ h is *Náno* totally JD continuous.

(ii) Let J be an *Náno* open set in L. Since s is *Náno* continuous, $s^{-1}(J)$ is *Náno* open in N. Since, h is *Náno* totally JD continuous, $h^{-1}(s^{-1}(J))$ is *Náno* JD clopen in (M, $\tau(P)$). Hence, s •

h is *Náno* totally JD continuous.

5. CONCLUSION

We have investigated the amazing attributes of Nano Perfectly & Totally JD continuous functions in this work. Going one step ahead, we also establish their relationship with other current notions.

REFERENCE

[1] K. Bhuvaneshwari and K.M.Gnanapriya, "NANO GENERALISED CLOSED SETS IN NANO TOPOLOGICAL SPACES", International Journal of Scientific and Research Publication, 4(5),pp.1-3,2014.

[2] R.T.Nachiyar and K.Bhuvaneshwari., "NANO GENERALISED α CLOSED SETS AND NANO α -GENERALISED IN NANO TOPOLOGICAL SPACES", *International Journal of Engineering Trends and Technology*, 13(6), pp.257-260,2014.

[3] I.L.Reilly and Vamanamurthy., "ON α - SETS IN TOPOLOGICAL SPACES", *Tamkang Journal of Mathematics*, 16, pp.7-11,1985.

[4] P.Anbarasi Rodrigo and K.Rajendra Suba., "FUNCTIONS RELATED TO β^* CLOSED SETS IN TOPOLOGICAL SPACES", International Journal of Mathematics Trends and Technology, Special Issue, March 2018.

[5] M.L.Thivagar and C.Richard., "ON NANO FORMS OF WEAKLY OPEN SETS ", International Journal of Mathematics and Statistics Invention, 1(1),pp 31-37, 2013.