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Abstract: 

The present paper  is the investigation of possibilities for improvements and generalizations contractive 
condition of Ciri´c in the fuzzy metric spaces. Various versions of fuzzy ´ contractive conditions are studied in 
two directions.  Establish fixed point theorems for quasi-contractive mappings and for ℋ −
contractive mappings more general contractive conditions in fuzzy metric spaces are achieved and secondly, 
quasi-contractive type of mappings are investigated in order to obtain fixed point results with a wider class of 
t-norms. 
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1. Introduction  
Famous Banach and Edelstein results have fundamental role in many fixed point 
theorems It is well known that the fuzzy metric spaces are a generalization of the 
metric spaces, based on the theory of fuzzy sets [30]. Kramosil and Michalek [22] 
introduced a fuzzy metric spaces performing the probabilistic metric spaces 
approach to the fuzzy settings. Further on, George and Veeramani [13], [14] 
obtained a Hausdorff topology for specific fuzzy metric spaces with important 
applications in quantum physics [11], [12]. Accordingly, many authors translated 
the various contraction mappings from metric to fuzzy metric spaces, 
 The Banach contraction principle [1] is usually taken as a starting point for many 
studies in the fixed point theory. The principle is observed in various types of metric 
spaces, as well as different generalizations of it.  
One of the most cited generalizations of the Banach contraction principle in 
probabilistic metric spaces is by Ciri´c [ ´ 11]. More information about the fuzzy and 
probabilistic metric spaces, as well as fixed point theory in these spaces, can be 
found in [12–18]. 
 First, we list basic definitions and propositions about t-norms and fuzzy metric 
spaces. The theory of set valued maps has applications in control theory, convex 
optimization, differential inclusions, and economics. The study of fixed points for 
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multivalued contraction mappings using the Hausdorff metric was initiated by 
Nadler 

2. Preliminaries  
Definition 2.1[wang,s] A binary operation T : [0, 1] × [0, 1] → [0, 1] is called a 
triangular norm (t-norm) if the following conditions hold:  
(i) T is associative and commutative  
(ii) T(a, 1) = a, a ∈ [0, 1], 
(iii)  T(a, b) ≤ T(c, d), whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1],  

Three basic examples of continuous t-norms are(minimum, product and 
Lukasiewicz t-norm, respectively). 

 Tmin(a, b) = min{a, b}, TP(a, b) = a · b and TL(a, b) = max{a + b − 1, 0}  

Definition 2.2[schweizer ,B] Let T be a t-norm and Tn : [0, 1] → [0, 1], n ∈ N, be 
defined in the following way: T1(x) = T(x, x), Tn+1(x) = T(Tn(x), x), n ∈ N, x ∈ [0, 1]. 
We say that the T is of H-type if the family Tn(x)n∈N is equi-continuous at x = 1. A 
trivial example of t-norm of H-type is Tmin. 

By 𝑇𝑖=1
0 xi = 1, 𝑇𝑖=1

𝑛 xi =1 xi = T(𝑇𝑖=1
𝑛−1xi =1 xi , xn), x1, x2, . . . , xn ∈ [0, 1], 

 t-norm T could be uniquely extended to an n-ary operation [clement ,E.P.;Mesiar 
,R;Pap]. The extension of t-norm T to a countable infinite operation is done as 
follows:  

𝑇𝑖=1
𝑛 xi = lim

𝑛→∞
𝑇𝑖=1

𝑛   =1 xi , xn ∈ [0, 1], n ∈ N, 

 where 𝑇𝑖=1
𝑛 =1 xi exists since the sequence lim

𝑛→∞
𝑇𝑖=1

𝑛   =1 xi , xn  [0,1] n∈N is non-

increasing and bounded from below.  

Let lim
𝑛→∞

𝑇𝑖=1
𝑛 xi  =1 and 

lim
𝑛→∞

𝑇𝑖=1
𝑛 xi  = lim

𝑛→∞
𝑇𝑖=1

𝑛 xn+i  =1 

Then, lim
𝑛→∞

𝑇𝑖=1
𝑛 xi  =1 

if and only if, ∑ (1 − 𝑥𝑖
∞
𝑖=1 ) < ∞, 

for T = TL and T = Tp  while 

, lim
𝑛→∞

𝑇𝑖=1
𝑛 xi  =1  if implies, ∑ (1 − 𝑥𝑖

∞
𝑖=1 ) < ∞, 

For T ≥ TL 

Proposition 2.3 [Hadzic] Let {xn}n∈N be a sequence of numbers from [0, 1] such that 
lim

𝑛→∞
xn  =1  and the t-norm T is of H-type. Then lim

𝑛→∞
𝑇𝑖=1

𝑛 xi  = lim
𝑛→∞

𝑇𝑖=1
𝑛 xn+i  =1  
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Definition 2.4 (George and Veeramani [9]). A triple (X, M, T) is called a fuzzy metric space 
if X is a non-empty set, T is a continuous t-norm and M : X 2 × (0, ∞) → (0, 1] is a fuzzy set 
satisfying the following conditions:  

(GV1) M(x, y, t) > 0,  

(GV2) M(x, y, t) = 1 if and only if x = y, 

 (GV3) M(x, y, t) = M(y, x, t),  

(GV4) M(x, z, t + s) ≥ T(M(x, y, t), M(y, z,s)), 

 (GV5) M(x, y, ·) : (0, ∞) → (0, 1] is continuous, for all x, y, z ∈ X and t,s > 0. 

 Definition 2.5 ([9]). Let (X, M, T) be a fuzzy metric space. Then, A sequence {xn}n∈N 

I. converge to x ∈ X (i.e., lim
𝑛→∞

xn  = x), if lim
𝑛→∞

 M(xn, x, t) = 1, t > 0. 

II. Cauchy if, for each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1 − 
ε, for all m, n ≥ n0. 
A fuzzy metric (X,M,T) is complete if  every cauchy sequence is convergent . 

 A fuzzy metric space (X, M, T) is complete if every Cauchy sequence is convergent.  

 Note: a fixed point results in the probabilistic metric spaces with the following 
generalization of the Banach’s contraction principle: 

 FTu,Tv(qx) ≥ min{Fu,v(x), Fu,Tu(x), Fv,Tv(x), Fu,Tv(2x), Fv,Tu(2x)},              (1)  

where x >0, are studied. Mappings F which, for some q ∈ (0, 1), satisfies condition (1) are 
named quasi-contractive mappings. In [11] is used t-norm T such that T(x, x) ≥ x, x ∈ [0, 1], 
which means that T = Tmin. if  possibilities for further extensions of t-norm in the context of 
fixed point problems with quasi-contractive mappings and ℋ − contractive mappings in 
the fuzzy metric spaces are elaborated.  

Let (X, d) be a metric space and mapping T : X → X. Recently, Kumam et al. [22] presented 
the following generalization contractive condition (1) of Ciri´c, ´ 

d(Tx, Ty) ≤ q max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), 

d(T 2 x, x), d(T 2 x, Tx), d(T 2 x, y), d(T 2 x, Ty)}, 

for all x, y ∈ X and some q ∈ [0, 1). In this case, they called the given condition a generalized 
quasi-contraction.  

Definition 2.6(Gregori and Sapena )Let (X, M, T) be a fuzzy metric space. f : X → X is called 
a fuzzy contractive mapping if there exists k ∈ (0, 1) such that  

(
1

M(f x,f y,t) 
 − 1 ) ≤ k  1 (

1

M( x,y,t) 
 − 1 ),                          (2) 

 for each x, y ∈ X and t > 0, k is called the contractive constant of f .  
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Definition 2.7 (Mihet )Let Ψ be the class of all mappings Ψ : (0, 1] → (0, 1] such that Ψ is 
continuous, non-decreasing and Ψ (t) > t for all t ∈ (0, 1). Let Ψ ∈ 𝚿. A mapping f : X → X is 
said to be fuzzy Ψ -contractive mapping if  

M(f x, f y, t) ≥ Ψ (M(x, y, t)),                                 (3) 

for all x, y ∈ X and t > 0. 

 Definition2.8 (Wardowski )Denoted by ℋ the family of mappings 𝜂 : (0, 1] → [0, ∞) 
satisfying the following two conditions:  

(H1) η transforms (0, 1] onto [0, ∞);  

(H2) η is strictly decreasing.  

Note that (H1) and (H2) imply that η(1) = 0.  

Definition 2.9 Let (X, M, T) be a fuzzy metric space. A mapping f : X → X is said to be fuzzy 
ℋ -contractive with respect to η ∈ ℋ if there exists k ∈ (0, 1) satisfying the following 
condition  

η (M(f x, f y, t)) ≤ kη(M(x, y, t)),                 (4) 

 for all x, y ∈ X and t > 0. 

Note that for a mapping η ∈ ℋ of the form η(t) =  
1

𝑡−1
, t ∈ (0, 1],  

Remark 1. It has been shown in [26] that the class of fuzzy H-contractive mappings are 
included in the class of ψ-contractive mappings.  

Proposition 2.10. Let (X, M, T) be a fuzzy metric space and let η ∈ H. A sequence {xn}n∈N 
in X is  

I. Cauchy if and only if, for every ε > 0 and t > 0, there exists n0 ∈ N such that η (M(xm, 
xn, t)) < ε, for all m, n ≥ n0 

II.  convergent to x ∈ X if and only if, lim
𝑛→∞

η(M(xn, x, t)) = 0, for all t > 0. 

 Theorem 2.11 (Wardowski [25]). Let (X, M, T) be a complete fuzzy metric space and let f 
: X → X be a fuzzy H-contractive mapping with respect to η ∈ H such that  

(a) 𝑇𝑛=1
𝑘 xi M(x, f x, tn) ≠0, for all x ∈ X, k ∈ N and any sequence {tn}n∈N ⊂ (0, ∞), tn ↘ 0;  

(b) T(r,s) > 0 implies η(T(r,s)) ≤ η(r) + η(s), for all r,s ∈ {M(x, f x, t) : x ∈ X, t > 0};  

(c) η(M(x, f x, tn) : n ∈ N} is bounded for all x ∈ X and any sequence {tn}n∈N ⊂ (0, ∞), tn & 0. 
Then, f has a unique fixed point x∗ ∈ X and for each x0 ∈ X, the sequence { f nx0}n∈N 
converges to x∗ .  

Further, motivated by the contractive condition (1) of Ciri´c, in [ ´ 27] fuzzy ℋcontractive 
mappings are generalized and the existence of a fixed point for fuzzy ℋ-quasi-contractive 
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mapping is proven. Definition 2.12[aminim-harandi] :Let (X, M, T) be a fuzzy metric 
space. A mapping f : X → X is said to be fuzzy H-quasi-contractive with respect to η ∈ H if 
there exists k ∈ (0, 1), satisfying the following condition:  

η(M(f x, f y, t)) ≤ k max{η(M(x, y, t)), η(M(x, f x, t)),                                   (5)  

η(M(y, f y, t)), η(M(x, f y, t)), η(M(y, f x, t))},  

for all x, y ∈ X and any t > 0. 

In the last part of the next section fuzzy ℋ-quasi-contractive mappings are generalized in 
the spirit of generalized quasi-contractions [kuman .p.dung] and fixed point result in fuzzy 
metric spaces is presented. Moreover, the mentioned generalization is confirmed by 
example.  

3.Main Results 

In this section, we use the fuzzy metric spaces in the sense of Definition 3 with additional 
condition if lim

𝑛→∞
 M(xn, x, t) = 1, x, y ∈ X.  

To prove the results, we use the following very important lemma: 

 Lemma 3. 1. Let {xn} be a sequence in fuzzy metric space (X, M, T). If there exists q ∈ (0, 1) 
such that  

M(xn, xn+1, t) ≥ M(xn−1, x𝑛, 
𝑡  

𝑞
), t > 0, n ∈ N,          (6) 

and lim
𝑛→∞

𝑇𝑖=𝑛
∞  M(xo, x1, t) = 1= 1, µ ∈ (0, 1),           (7) 

 then {xn} is a Cauchy sequence.  

Proof. Let σ ∈ (q, 1) and let t > 0. Then ∑ 𝜎𝑖∞
𝑖=1  < ∞; therefore, there exists n0 = n0(t), such 

that  

∑ 𝜎𝑖∞
𝑖=1  ≤ t. Clearly, condition (6) implies that  

M(xn, xn+1, t) ≥ M(x0, x1, 
𝑡

𝑞𝑛
 ), n ∈ N. 

For n ≥ n0, m ∈ N we have  

M(xn, xn+m, t) ≥ M(xn, xn+m, ∑ 𝜎𝑖∞
𝑖=1 ) ≥ M(xn, xn+m, ∑ 𝜎𝑖𝑛+𝑚−1

𝑖=1 ) 

 ≥ T(T(. . . T | {z } (m−1)−times (M(xn, xn+1, 𝜎𝑛  ), . . . , M(xn+m−1, xn+m, σ n+m−1 )))  

≥ T(T(. . . T | {z } (m−1)−times (M(x0, x1, 
𝜎𝑛

𝑞𝑛), . . . , M(x0, x1, 
𝜎n+m−1 

𝑞n+m−1 ))). 

 Let µ= 
𝑞

𝜎
∈ (0, 1).  
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Then M(xn, xn+m, t) ≥ 𝑇𝑖=𝑛
𝑛+𝑚−1 M(xo, x1, 

1

𝜇𝑖) ≥ 𝑇𝑖=𝑛
∞  M(xo, x1, 

1

𝜇𝑖) n ≥ n0, m ∈ N.  

Now, by (7) follows Definition 4 (ii) and {xn} is Cauchy sequence. 

 Our first new result in this section is the following:  

Theorem 3.2. Let (X, M, Tmin) be a complete fuzzy metric space and let f : X → X be a quasi-

contractive mapping such that, for some q ∈ (0, 
1

2
) :  

M(f x, f y, t) ≥ min{M(x, y,   
𝑡

𝑞
 ), M(f x, x, 

𝑡

𝑞
), M(f y, y, 

𝑡

𝑞
), M(x, f y, 

𝑡

𝑞
), M(f x, y, 

𝑡

𝑞
) M(f x, fx, 

𝑡

𝑞
), M(f 

y, x, 
𝑡

𝑞
) },  8 

for all x, y ∈ X and t > 0. Suppose that there exists x0 ∈ X such that 

lim
𝑛→∞

𝑇𝑖=𝑛
∞  M(xo, fxo, 

1

𝜇𝑖) = 1, µ ∈ (0, 1), (9) 

Then, f has unique fixed point. 

 Proof. Let xn = f xn−1, n ∈ N, where initial x0 ∈ X satisfied (9). Then, observe (8) with x = 
xn−1, y = xn :  

M(xn, xn+1, t) ≥ min{M(xn−1, xn, 
𝑡

𝑞
 ), M(xn, xn−1, 

𝑡

𝑞
), M(xn+1, xn, 

𝑡

𝑞
), M(xn−1, xn+1, 

𝑡

𝑞
),  

M(xn, xn, 
𝑡

𝑞
) M(xn, xn, 

𝑡

𝑞
) M(xn+1, xn, 

𝑡

𝑞
)   }  

≥min{M(xn−1, xn, 
𝑡

𝑞
 ), M(xn, xn+1, 

𝑡

𝑞
), minM(xn-1, xn, 

𝑡

𝑞
), M(xn−1, xn, 

𝑡

2𝑞
),  

M(xn, xn, 
𝑡

2𝑞
) M(xn, xn+1, 

𝑡

2𝑞
)min M(xn, xn, 

𝑡

2𝑞
)   M(xn+1, xn, 

𝑡

2𝑞
)    

t > 0, n ∈ N. If we suppose that  

min{M(xn−1, xn, 
𝑡

2𝑞
), M(xn, xn+1, 

𝑡

2𝑞
)} = M(xn, xn+1, 

𝑡

2𝑞
), then, using the previous calculations, we 

get the contradiction  

M(xn, xn+1, t) ≥ M(xn, xn+1, 
𝑡

2𝑞
),  

since 2q < 1 and M(x, y, t) is increased by t. Thus,  

M(xn, xn+1, , 
𝑡

2𝑞
) ≥ min{M(xn−1, xn, 

𝑡

𝑞
 ), for all n ∈ N, and for q1 = 2q, q1 ∈ (0, 1) : 

M(xn, xn+1, t) ≥ M(xn-1, xn, 
𝑡

2𝑞
), t > 0, n ∈ N.  

By Lemma 1, it follows that {xn} is Cauchy sequence. Space (X, M, Tmin) is complete and 
there exist x ∗ ∈ X such that lim

𝑛→∞
 xn = x ∗ . If we put x = xn, y = x ∗ in (8): M(xn+1, fx ∗, t)   ) ≥ 
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min{M(xn, x ∗ , 
𝑡

𝑞
 ), M(xn+1, xn, 

𝑡

𝑞
), M(f x∗ , x ∗ , 

𝑡

𝑞
), M(xn, f x∗ , 

𝑡

𝑞
), M(f x, y, 

𝑡

𝑞
) M(f x, y, 

𝑡

𝑞
) M(f x, y, 

𝑡

𝑞
) 

} 

 n ∈ N, t > 0, and take n → ∞ then M(x ∗ , f x∗ , t) ≥ M(x ∗ , f x∗ , 
𝑡

𝑞
 ), t > 0,  

i.e., x ∗ is the fixed point for f . 

 Suppose that x ∗ and y ∗ are fixed points for f then, by (8):  

M(f x∗ , f y∗ , t) ≥ min{M(x ∗ , y ∗ , 
𝑡

𝑞
), M(f x∗ , x ∗ , 

𝑡

𝑞
), M(f y∗ , y ∗ , 

𝑡

𝑞
), M(x ∗ , f y∗ 

𝑡

𝑞
), M(f x∗ , y ∗ , 

𝑡

𝑞
) 

M(f x∗ , y ∗ , 
𝑡

𝑞
) M(f x∗ , y ∗ , 

𝑡

𝑞
) },  

t > 0.  

Then, M(x ∗ , y ∗ , t) ≥ M(x ∗ , y ∗ , M(f x∗ , y ∗ , 
𝑡

𝑞
)},), t > 0, and x ∗ = y ∗ .  

Example3.3 Let X = (0, 3), M(x, y, t) =𝑒
− |𝑥−𝑦|

𝑡  T = TP and  

𝑓(𝑥) = {
3 − 𝑥, 𝑥 ∈ (0.1)

1, 𝑥 ∈ [1,3)
 

 Case 1. If x, y ∈ [1, 2), then M(f x, f y, t) = 1, t > 0 and conditions (11) and (12) are trivially 
satisfied.  

Case 2. If x ∈ [1, 2) and y ∈ (0, 1), then, for q ≥ 
1

3
, we have 

M(f x, f y, t) = 𝑒
− |1−𝑦|

𝑡  ≥ 𝑒
− 3𝑞|1−𝑦|

𝑡  = M(f y, y, 
𝑡

𝑞
), t > 0. 

 Case 3. Analogously as in the previous case for q ≥ 
1

3
, we have 

 M(f x, f y, t) ≥ M(f x, x, q ≥ 
𝑡

𝑞
), x ∈ (0, 1), y ∈ [1, 2), t > 0. 

 Case 4. If x, y ∈ (0, 1), then, for q ≥ 
1

3
, 

 M(f x, f y, t) =𝑒
− |𝑥−𝑦|

𝑡  ≥𝑒
− |1−𝑦|

𝑡  ≥ 𝑒
− 3𝑞|1−𝑦|

𝑡  = M(f y, y, t q ), x > y, t > 0, and  

M(f x, f y, t) ≥ M(f x, x, t q ), x < y, t > 0.  

Thus, conditions (11) and (12) are satisfied for all x, y ∈ X, t > 0 and follows that x = 1 is a 
unique fixed point for f . 

Theorem 3.4. Let (X, M, T) be a complete fuzzy metric space, T ≥ TP and let f : X → X is a 
fuzzy generalized quasi-contractive mapping such that for some q ∈ (0, 1) : 
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 M(f x, f y, t) ≥ min{M(x, y, 
𝑡

𝑞
 ), M(f x, x, 

𝑡

𝑞
), √M(x, f y,

2𝑡

𝑞
),  √M(x, f y,

2𝑡

𝑞
),      11 for all x, y ∈ X 

and t > 0. Suppose that there exists x0 ∈ X such that  

lim
𝑛→∞

𝑇𝑖=𝑛
∞  i=nM(x0, f x0, 

1

𝜇𝑖) = 1, µ ∈ (0, 1).   12 

hen, f has a unique fixed point. 

Definition 3.5 [17] Denote by H the family of all onto and strictly decreasing mappings η : 
(0, 1] → [0, ∞). Let (X, M, ∗) be a fuzzy metric space. A mapping T : X → X is said to be fuzzy 
H-quasi contractive with respect to η ∈ H if there exists k ∈ (0, 1) satisfying  

η(M(T x, T y, t)) ≤ kη(M(x, y, t)), ∀ x, y ∈ X ∀ t > 0. 

For η(t) = 
1

𝑡
− 1 one obtains the class of fuzzy contractive mappings introduced by Gregori 

and Sapena in [5]. 

 If η ∈ H then η(1) = 0 and η is continuous. 

Theorem 3.6. [17] Let (X, M, ∗) be an M-complete fuzzy metric space and let T : X → X be a 
fuzzy H-quasi contractive mapping with respect to η ∈ H such that:  

(a) ∏ M(x, T x, ti) 𝑘
𝑖=1 ≠0, for all x ∈ X, k ∈ N and any sequence (tn) ⊆ (0, ∞), tn ↓ 0; 

 (b) r ∗s > 0 ⇒ η(r ∗s) ≤ η(r)+η(s), for all r, s ∈ {M(x, T x, t) : x ∈ X, t > 0};  

(c) {η(M(x, T x, ti)) : i ∈ N} is bounded for all x ∈ X and any sequence (tn) ⊆ (0, ∞), tn ↓ 0. 
Then T has a unique fixed point x ∗ ∈ X and for each x0 ∈ X the sequence (T nx0)n∈N converges 
to x ∗ .  

Theorem 3.7. Let ∗g be a strict t-norm. If (X, M, ∗) is an M-complete fuzzy metric space 
under a t-norm ∗ ≥ ∗g and T : X → X is a H-contractive mapping with respect to g with the 
property M(x, T x, 0+) = limt→0+ M(x, T x, t) > 0 for all x ∈ X, then T has a unique fixed 
point. 

 Proof. As the proof follows the lines of the proof of Theorem 3.2. in [17], we only sketch it. 
Let x ∈ X and (xn)n∈N, xn = T nx be the sequence of iterates of x. Then, for all t > 0, n ∈ N, 

 g(M(xn, xn+1, t)) ≤ k ng(M(x, T x, t)). Let m, n ∈ N, m < n and t > 0 be given and let {a𝑖} be a 
strictly decreasing sequence of positive numbers with ∑ 𝑎𝑖

∞
𝑖=1  = 1. Then 

M(xm, xn, t) ≥ M(xm, xn, ∑ 𝑎𝑖
∞
𝑖=1 𝑡) ≥ (xi , xi+1,∏ 𝑎𝑖

𝑛−1
𝑖=𝑚  𝑡).  

≥ (∗𝑔) 𝑖=𝑚

𝑛−1  =m g(M(xi , xi+1, ait)) 

This implies     

g(M(xm, xn, t) ) ≤∑ 𝑔(𝑀(∞
𝑖=1 𝑥𝑖𝑥𝑖+1𝑎𝑖𝑡 )      ≤ ∑ 𝑘𝑖∞

𝑖=1 g(M(x, T x, 𝑎𝑖𝑡)  
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≤ g(M(x, T x, 0+) ∑ 𝑘𝑖

∞

𝑖=1

    

 proving that (xn) is Cauchy. The fact that the limit of (xn) is the unique fixed point of T can 
be easily reproduced from the proof of Theorem 3.5. in [17].  

Our main theorem is related to the concept of quasi-contraction, initiated by Lj. B. Ciri´c in 
[1]. We define a fuzzy ´ H-quasi-contractive mapping as follows 

Definition 3.8. Let (X, M, ∗) be a fuzzy metric space. A mapping T : X → X is said to be fuzzy 
H-quasi-contractive with respect to η ∈ H if there exists k ∈ (0, 1) satisfying the following 
condition: 

 η(M(T x, T y, t)) ≤ k max{η(M(x, y, t)), η(M(x, T x, t)), η(M(y, T y, t)), η(M(x, T y, t)), }                  
(13)  

for all x, y ∈ X and any t > 0. 

Theorem 3.9. 

 Let (X, M, ∗) be an M-complete fuzzy metric space and let T : X → X be a fuzzy H-quasi-
contractive mapping with respect to η ∈ H such that 

 (a) τ ≥ r ∗ s ⇒ η(τ ) ≤ η(r) + η(s), for all r, s, τ ∈ {M(T ix, Tjx, t) : x ∈ X, t > 0, i, j ∈ N};  

(b) {η(M(x, T x, ti)) : i ∈ N} is bounded for all x ∈ X and any sequence {tn} ⊆ (0, ∞), tn ↓ 0.  

Then T has a unique fixed point x ∗ ∈ X and for each x ∈ X the sequence {T nx} converges to 
x ∗ . 

Proof. For A ⊆ X let δt(A) = sup{η(M(x, y, t)) : x, y ∈ A} and for each x ∈ X let 

 O(x, n) = {x, T x, ..., T nx} and O(x, ∞) = {x, T x, ...}, n ∈ N. Let x ∈ X be arbitrary. Let n ∈ N and 
let i, j ∈ {1, 2, ..., n}. Then from (13), we obtain  

η(M(T ix, Tjx, t)) = η(M(T Ti−1 x, T Tj−1 x, t)) ≤ k max{ η(M(T Ti−1 x, T Tj−1 x, t)) η(M(T i−1 x, Tix, 
t)), η(M(T j−1 x, Tjx, t)), η(M(T i−1 x, Tj x, t)), } 

 ≤ kδt(O(x, n)), and so η(M(T ix, Tjx, t)) ≤ kδt(O(x, n)), i, j ∈ {1, 2, ..., n}, x ∈ X.            (14)  

Now, if δt(O(x, n)) = η(M(T i0 x, Tj0 x, t)) for some i0, j0 > 1, then from (14) it follows δt(O(x, 
n)) ≤ kδt(O(x, n)), that is, δt (O(x, n)) = 0 and thus η(M(T ix, Tjx, t)) = 0, ∀i, j ≤ n.  

Particularly, η(M(x, T x, t)) = 0, which implies M(x, T x, t) = 1. From (GV2) it follows that x = 
T x, that is, x is a fixed point for T. In the contrary case, δt (O(x, n)) = η(M(x, Tlx, t)), (3) for 
some l ≤ n.  

Then, by choosing a strictly decreasing sequence of positive numbers {ai}  

with ∑  ∞
𝑖=1  ai = 1, from                   (15), 
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we deduce δt (O(x, n)) = η(M(x, Tlx, t)), = η(M(x, Tlx, ∑  ∞
𝑖=1 ai t)),  

≤ η(M(x, Tlx, ∑  ∞
𝑖=𝐽+1 ai t)), + η(M(x, Tlx, ∑  

𝑗
𝑖=1 ai t)), ∀ j  

and so δt (O(x, n)) ≤ l lim
𝑗→∞

 𝑠𝑢𝑝 η(M(x, Tlx, ∑  ∞
𝑖=𝐽+1 ai t)), + η(M(x, Tlx, t)),  

≤ lim
𝑗→∞

 𝑠𝑢𝑝 η(M(x, Tlx, ∑  ∞
𝑖=𝐽+1 ai t)), + kδt (O(x, n)) η 

Then  

δt (O(x, n)) ≤ 
1

1−𝑘
 lim
𝑗→∞

 𝑠𝑢𝑝 η(M(x, Tlx, ∑  ∞
𝑖=𝐽+1 ai t)),                                (16)  

Let n, m, n < m be any natural numbers. From (14), we get 

 η(M(T nx, T mx, t)) = η(M(T T n−1x, T m−n+1T n−1x, t))  

≤ kδt(O(T n−1x, m-n+1)) (5)  

From (3), there exists k1 ≤ m − n + 1 such that  

δt(O(T n−1 x, m − n + 1)) = η(M(T n−1 x, T k1 T n−1 x, t)).( 17)  

From (14),(16) and (17), we get  

η(M(T nx, T mx, t)) = kη(M(T n−1x, T k1 T n−1x, t))  

= kη(M(T n−2x, 𝑘1 + 1)) 

≤ k 2 δt(O(T n−2x, k1 + 1)) ≤ k 2 δ t (O(T n−2 x, m − n + 2)).  

Proceeding in this manner, we obtain  η(M(T nx, T mx, t)) ≤ k n δ t (O(x, m)). (16) From (14) 
and (17)  

it follows η(M(T nx, T mx, t)) ≤ 
kn

1−𝑘
 lim
𝑗→∞

 𝑠𝑢𝑝 η(M(x, Tlx, ∑  ∞
𝑖=𝐽+1 ai t)), (18)  

From (18) and (b), we have lim
𝑚,𝑛→∞

  η(M(T nx, T mx, t)) = 0, and so lim
𝑚,𝑛→∞

  η(M(T nx, T mx, t)) = 

1. 

 Thus, (xn)n∈N, xn = T nx is a Cauchy sequence. By the completeness of X there exists x ∗ ∈ X 
such that lim

,𝑛→∞
  xn = x ∗ .  

Let t > 0 be given. Then, for each  > 0 and n ∈ N, we have M(x ∗ , T x∗ , t + ∈) ≥ M(x ∗ , T n+1 x ∗ , 
∈)  ) ∗ M(T x∗ , T n+1 x ∗ , t) and hence 

 η M(x ∗ , T x∗ , t + ∈) ≤ η M(x ∗ , T n+1 x ∗ , ∈)  ) + η M(x ∗ , T m+1 x ∗ , 𝑡)  ) 

 ≤ η(M(x ∗ , T n+1x ∗ , )) + k max{η(M(x ∗ , T nx ∗ , t)), η(M(x ∗ , T x∗ , t)), η(M(T n x ∗ , T n+1 x 
∗ , t)), η(M(x ∗ , T m+1 x ∗ , t)), } 
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Letting n → ∞ (having in mind Lemma 3.3) we obtain  

η(M(x ∗ , T x∗ , t + )) ≤ kη(M(x ∗ , T x∗ , t)), 

 and so  

η(M(x ∗ , T x∗ , t)) = lim
,∈→0+

  η M(x ∗ , T x∗ , t+∈)),≤ kη((M(x ∗ , T x∗ , t))  

Thus η(M(x ∗ , T x∗ , t)) = 0, implying η(M(x ∗ , T x∗ , t)) = 1.  

To show the uniqueness assume that y ∗ is a fixed point of T. Then, for all t > 0, 

η(M(x ∗ , T x∗ , t)) = η(M(T x∗ , T y∗ , t)) ≤ k max{η(M(x ∗ , y∗ , t)), η(M(x ∗ , T x∗ , t)) η(M(y ∗ , T 
y∗ , t)), η(M(x ∗ , T y∗ , t)), } = kη(M(x ∗ , y∗ , t)). This gives (M(x ∗ , y∗ , t)). = 1, that is, x ∗ = y ∗ .  
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