GROUP S₃ CORDIAL SUM DIVISOR LABELING OF SOME DERIVED GRAPHS

M. SEENIVASAN

DEPartment of Mathematics, Associate Professor, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu. India.

P. ARUNA RUKMANI

Research scholar, Registration number:19121282092009. Department of mathematics, St.xavier's college (Autonomous), Affiliated to Manonmaniam Sundaranar University, Abishekapatti., Tirunelveli-627012, Tamilnadu, India.

A. LOURDUSAMY

Department of mathematics, Associate Professor, St.xavier's college(Autonomous), Affiliated to Manonmaniam Sundaranar University, Abishekapatti., Tirunelveli-627012, Tamilnadu, India.

Abstract. Let G = (V(G), E(G)) be a graph and let $h : V(G) \to S_3$ be a function. For each edge uv assign the label 1 if 2 divides (O(h(u)) + O(h(v))) and 0 otherwise. The function h is called a Group S_3 cordial sum divisor labeling of G if $|v_h(i) - v_h(j)| \le 1$ and $|e_h(1) - e_h(0)| \le 1$ where $v_h(k)$ denote the number of vertices labeled with $k, k \in S_3$ and $e_h(1)$ and $e_h(0)$ denote the number of edges labeled with 1 and 0 respectively. A graph G which admits a Group S_3 cordial sum divisor labeling is called a Group S_3 cordial sum divisor graph. In this paper, we investigate the Group S_3 cordial sum divisor labeling of some derived graphs.

1. INTRODUCTION

For graph theoretical terminology, we refer to [2]. All graphs considered hereare simple, finite, connected and undirected. There are several types of labeling and a detailed survey of graph labeling can found in [3]. Cordial labeling is a weakerversion of graceful labeling and Harmonious labeling introduced by I.Cahit in [1]. Sum divisor cordial labeling was due to Lourdusamy and Patrick[5]. The concept of Group S_3 cordial prime labeling was due to Kala and Chandra [4].

Motivated by these concepts, we introduce the concept of Group S_3 cordial sum divisor labeling. In this paper we investigate the Group S_3 cordial sum divisor labeling of some derived graphs.

Definition 1.1. Let A be a group. The order $a \in A$ is the least positive integer n such that $a^n = e$. We denote the order of a by o(a).

Definition 1.2. Consider the Symmetric group S_3 .Let the element of S_3 be e, a, b, c, d, f where

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
$$a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$d = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

we have O(e) = 1, O(a) = O(b) = O(c) = 2, and O(d) = O(f) = 3.

Definition 1.3. A Helm H_n is constructed from a wheel W_n by adding n vertices of degree one adjacent to each terminal vertex.

Definition 1.4. A Flower graph Fl_n is constructed from a helm H_n by joining each vertex of degree one to the center.

Definition 1.5. The Closed Helm CH_n is the graph obtained from helm H_n by joining each pendant vertex form a cycle.

Definition 1.6. For a simple connected graph G, the square of graph G is denoted by G^2 and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

Definition 1.7. The graph $H_n \odot k_1$ is obtained by adding a pendant edge to each vertex of an H-graph H_n .

Definition 1.8. Globe graph is defined as the two isolated vertex are joined by n paths of length 2.It is denoted by Gl(n).

Definition 1.9. Let G be a graph and let $G_1 = G_2 = \cdots G_n$ where $n \ge 2$, then the graph obtained by adding an edge from each G_i to G_{i+1} $(1 \le i \le n-1)$ is called the path union of G.

2. Main results

Theorem 2.1. The Flower graph Fl_n is a Group S_3 cordial sum divisor graph.

Proof. Let $G = Fl_n$. Let $V(G) = \{v, v_i, u_i : 1 \le i \le n\}$ and $E(G) = \{vv_i, v_iu_i, vu_i : 1 \le i \le n; v_nv_1; v_iv_{i+1} : 1 \le i \le n-1\}$. Then G is of order 2n+1 and size 4n. Define $h: V(G) \rightarrow S_3$ as follows

$$h(vi) = \begin{cases} a & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ b & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(ui) = \begin{cases} d & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ e & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

Table 1

Nature of <i>n</i>	$v_h(a)$	$v_h(b)$	$v_h(c)$	$v_h(d)$	$v_h(e)$	$v_h(f)$	$e_h(0)$	$e_h(1)$
6 <i>k</i> + 1(<i>k</i> ≥	2 <i>k</i> +	2 <i>k</i>	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i>	2 <i>k</i>	12k + 2	12 <i>k</i> +
1)	1		1	1				2
6k + 2(k ≥	2 <i>k</i> +	2k + 1	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i>	12k + 4	12 <i>k</i> +
1)	1		1	1	1			4
6k + 3(k ≥	2 <i>k</i> +	2k + 1	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	12k + 6	12 <i>k</i> +
0)	1		1	1	1	1		6
6k + 4(k ≥	2 <i>k</i> +	2k + 1	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	12k + 8	12 <i>k</i> +
0)	2		1	2	1	1		8
$6k + 5(k \ge$	2 <i>k</i> +	2k + 2	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	12 <i>k</i> +	12 <i>k</i> +
0)	2		1	2	2	1	10	10
$6k(k \ge 1)$	2 <i>k</i>	2 <i>k</i>	2 <i>k</i> +	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	12 <i>k</i>	12 <i>k</i>
			1					

Table 2

Nature of <i>n</i>	v _h (a	v _h (b	$v_h(c$	$v_h(d$	v _h (f	v _h (e	$e_h(0)$	$e_h(1)$
))))))		
$3k + 1(k \ge 1)$	k +	k	k	<i>k</i> +	k	<i>k</i> +	6k +	6k +
1)	1			1		1	2	2
$3k + 2(k \ge$	k +	<i>k</i> +	k	<i>k</i> +	k + 1	<i>k</i> +	6k +	6k +
1)	1	1		1		1	4	4
$3k(k \ge 1)$	k	k	k	k	k	<i>k</i> +	6k	6 <i>k</i>
						1		

From TABLE 1,we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore,the Flower graph Fl_n admits a Group S_3 cordial sum divisor labeling. Hence the Flower graph Fl_n is a group S_3 cordial sum divisor graph.

Theorem 2.2. The Closed Helm graph CH_n is a Group S_3 cordial sum divisor graph.

Proof. Let $G = CH_n$. Let $V(G) = \{v, v_1, v_2, v_3, \cdots v_n, u_1, u_2, u_3, \cdots u_n\}$ and $E(G) = \{vv_i, u_iv_i : 1 \le i \le n\} \cup \{v_iv_{i+1}, u_iu_{i+1} : 1 \le i \le n-1\} \cup \{v_1v_n, u_1u_n\}$ Then G is of order 2n+1 and size 4n. Define $h: V(G) \to S_3$ as follows $h(u) = e_{[i]}$

$$h(vi) = \begin{cases} a & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ b & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(ui) = \begin{cases} d & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ e & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

From TABLE 2,we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$. Therefore, the Closed Helm graph CH_n admits a Group S_3 cordial sum divisor labeling. Hence the Closed Helm graph CH_n is a group S_3 cordial sum divisor graph.

Theorem 2.3. P_n^2 , $n \ge 3$ is a Group S_3 cordial sum divisor graph.

Proof. Let $G = P_n^2$. Let $v_1, v_2, v_3, \cdots v_n$ be the vertices of the Path P_n . Let $V(G) = \{v_1, v_2, v_3, \cdots, v_n\}$ be the vertices of the path P_n^2 and $E(G) = \{v_i v_{i+1} : 1 \le i \le n - 1\} \cup \{v_i v_{i+2} : 1 \le i \le n - 2\}$ Then P_n^2 is of order n and size 2n - 3. Define $h : V(G) \to S_3$ as follows

$$h(vi) = \begin{cases} d & \text{if } i \equiv 1 \pmod{6} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 2 \pmod{6} \text{ and } 1 \leq i \leq n \\ e & \text{if } i \equiv 3 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(vi) = \begin{cases} b & \text{if } i \equiv 4 \pmod{6} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 5 \pmod{6} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 0 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

Table 3

Nature of <i>n</i>	$v_h(d$	v _h (a	v _h (e	v _h (b	v _h (f	v _h (c	$e_h(0)$	$e_h(1)$
))))))		
$6k + 1(k \ge$	<i>k</i> +	k	k	k	k	k	6 <i>k</i>	6 <i>k</i> – 1
1)	1							
6k + 2(k ≥	k +	k +	k	k	k	k	6k +	6 <i>k</i>
1)	1	1					1	
6k + 3(k ≥	k +	k +	<i>k</i> +	k	k	k	6k +	6k +
0)	1	1	1				2	1
$6k + 4(k \ge 1)$	k +	k +	<i>k</i> +	<i>k</i> +	k	k	6k +	6k +
0)	1	1	1	1			3	2
6k + 5(k ≥	k +	k +	<i>k</i> +	<i>k</i> +	k + 1	k	6k +	6k +
0)	1	1	1	1			4	3
$6k(k \ge 1)$	k	k	k	k	k	k	6k – 1	6k – 2

Table 4

Nature of <i>n</i>	v _h (a	$v_h(d$	$v_h(c$	v _h (e	$v_h(b$	v _h (f	$e_h(0)$	$e_h(1)$
))))))		
6k + 2(k ≥	k +	k +	k	k	k	k	6k +	6k +

1)	1	1					2	2
$6k + 4(k \ge$	k +	<i>k</i> +	<i>k</i> +	k +	k	k	6k +	6k +
0)	1	1	1	1			4	4
$6k(k \ge 1)$	k	k	k	k	k	k	6 <i>k</i>	6k

From TABLE 3,we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore, $P^2, n \ge 3$ ädmits a Group S_3 cordial sum divisor labeling. Hence $P_n^2 \ge 3$ is a group S_3 cordial sum divisor graph.

Theorem 2.4. The Square graph C_{n}^{2} , n is even admits Group S_{3} cordial sum divisor graph.

Proof. Let $G=C_n^2$ where n is even and $V(G)=\{u_i:0\leq i\leq n-1\}$ and $E(G)=\{u_iu_{i+1}:0\leq i\leq n-1\}\cup\{u_iu_{i+2}:0\leq i\leq n-2\}$ Then G is of order n and size 2n. Define h: $V(G)\to S_3$ as follows

$$h(vi) = \begin{cases} a & \text{if } i \equiv 1 \pmod{6} \text{ and } 1 \leq i \leq n \\ d & \text{if } i \equiv 2 \pmod{6} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 3 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(vi) = \begin{cases} e & \text{if } i \equiv 4 \pmod{6} \text{ and } 1 \leq i \leq n \\ b & \text{if } i \equiv 5 \pmod{6} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 0 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

From TABLE 4, we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore, $C_n^{2,i}$ is even admits a Group S_3 cordial sum divisor labeling. Hence C_n^2 is even is a group S_3 cordial sum divisor graph.

Theorem 2.5. A graph obtained by attaching the central vertex $K_{1,2}$ at each pen-dant vertex of a comb $P_n \odot K_1$ admits Group S_3 cordial sum divisor graph.

Proof. Let G be a graph obtained by attaching the central vertex of $K_{1,2}$ at each of a Comb.

Let
$$V(G) = \{u_i, v_i, x_i, y_i : 1 \le i \le n\}$$
 and $E(G) = \{u_i u_{i+1} : 1 \le i \le n - 1\} \cup \{u_i v_i, v_i x_i, v_i y_i : 1 \le i \le n\}$

be the vertex set and edge set of G respectively. Then G is of order 4n and size 4n-1. Define $h:V(G)\to S_3$ as follows

Table 5

Natu	$v_h(a)$	$v_h(b)$	$v_h(c)$	$v_h(d)$	$v_h(e)$	$v_h(f)$	$e_h(0)$	<i>e</i> _h (1)
re of <i>n</i>								
$3k + 1(k \ge 1)$	2 <i>k</i>	2k + 1	2 <i>k</i>	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	6k + 1	6k +
1)				1	1	1		2

$3k + 2(k \ge$	2 <i>k</i> +	2k + 1	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	6k + 3	6k +
0)	1		2	1	1	2		4
$3k(k \ge 1)$	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	6k – 1	6 <i>k</i>

$$h(ui) = \begin{cases} e & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ b & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(vi) = \begin{cases} f & \text{if } i \equiv 1 \text{ (mod 3) and } 1 \leq i \leq n \\ c & \text{if } i \equiv 2 \text{ (mod 3) and } 1 \leq i \leq n \\ d & \text{if } i \equiv 0 \text{ (mod 3) and } 1 \leq i \leq n \end{cases}$$

$$h(xi) = \begin{cases} d & \text{if } i \equiv 1 \text{ (mod 3) and } 1 \leq i \leq n \\ c & \text{if } i \equiv 2 \text{ (mod 3) and } 1 \leq i \leq n \\ e & \text{if } i \equiv 0 \text{ (mod 3) and } 1 \leq i \leq n \end{cases}$$

$$h(yi) = \begin{cases} b & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

From TABLE 5,we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore, G admits a Group S_3 cordial sum divisor labeling. Hence G is a group S_3 cordial sum divisor graph.

Theorem 2.6. $S(k_{1,n})$ for all $n \ge 1$, is a Group S_3 cordial sum divisor graph.

Proof. Let $G = S(k_{1,n})$.Let $V(G) = \{u, v_i, u_i : 1 \le i \le n\}$ and $E(G) = \{uv_i, v_iu_i : 1 \le i \le n\}$ Here G is of order 2n + 1 and size 2n. Define $h : V(G) \to S_3$ as follows h(u) = a

$$h(vi) = \begin{cases} b & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(ui) = \begin{cases} d & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ e & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

Table 6

Nature of <i>n</i>	$v_h(a)$	$v_h(b)$	$v_h(c)$	$v_h(d)$	$v_h(e)$	$v_h(f)$	$e_h(0)$	$e_h(1)$
6 <i>k</i> + 1(<i>k</i> ≥	2 <i>k</i> +	2k + 1	2 <i>k</i>	2 <i>k</i> +	2 <i>k</i>	2 <i>k</i>	6k + 1	6k +
0)	1			1				1
6k + 2(k ≥	2 <i>k</i> +	2k + 1	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i>	6k + 2	6k +
0)	1		1	1	1			2
6k + 3(k ≥	2 <i>k</i> +	2k + 1	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	6k + 3	6k +
0)	2		1	1	1	1		3

6k + 4(k ≥	2 <i>k</i> +	2k + 2	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	6k + 4	6k +
0)	2		1	2	1	1		4
6k + 5(k ≥	2 <i>k</i> +	2k + 2	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	2 <i>k</i> +	6 <i>k</i> + 5	6k +
0)	2		2	2	2	1		5
$6k(k \ge 1)$	2 <i>k</i> +	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	6 <i>k</i>	6 <i>k</i>
	1							

From TABLE 6,we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore, $S(k_{1,n})$ for all $n \ge 1$ admits a Group S_3 cordial sum divisor labeling. Hence $S(k_{1,n})$ for all $n \ge 1$ is a group S_3 cordial sum divisor graph.

Theorem 2.7. The graph $H_n \odot K_1$ is a group S_3 cordial sum divisor graph.

Proof. Let be a $H_n \odot K_1$ graph with the vertex set $V(H_n) = \{u_i, v_i : 1 \le i \le n\}$ and Let $u_1, u_2, u_3, \ldots, u_n$ and $v_1, v_2, v_3, \ldots, v_n$ be the pendant vertices connected to v_1, v_2, \ldots, v_n respectively in G. Then |V(G)| = 4n and |E(G)| = 4n - 1.

Hence the vertices $u_{(n+1)}$ and $v_{(n+1)}$ are connected by an edge, if n is odd or the vertices u_n and $v_{(n)+1}$ by an edge, if n is even. Define h:V (G) \rightarrow S₃ as follows

by an edge, if n is even. Define h:V (G)
$$\rightarrow$$
 S₃ and h(ui) =
$$\begin{cases} c & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ b & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(u'i) = \begin{cases} f & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ d & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ e & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(vi) = \begin{cases} a & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ b & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 0 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(v'i) = \begin{cases} d & \text{if } i \equiv 1 \pmod{3} \text{ and } 1 \leq i \leq n \\ e & \text{if } i \equiv 2 \pmod{3} \text{ and } 1 \leq i \leq n \end{cases}$$

$$|v_{i}(i) = v_{i}(i)| \leq 1 \text{ for every } i \in S_{3} \text{ and } l \in \Omega \end{cases}$$

It is easy to verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore, g is a Group S_3 cordial sum divisor labeling.

Theorem 2.8. Globe Gl(n), $n \ge 3$ is a Group S_3 coodial sum divisor graph.

Proof. Let G = Gl(n).Let $V(G) = \{u, v, w_i : 1 \le i \le n\}$ and $E(G) = \{[uw_i] \cup [vw_i] : 1 \le i \le n\}$. Here, |V(G)| = n and |E(G)| = 2n. Define $h : V(G) \to S_3$ as follows h(u) = a h(v) = f $h(wi) = \begin{cases} b & \text{if } i \equiv 1 \pmod{6} \text{ and } 1 \le i \le n \\ c & \text{if } i \equiv 2 \pmod{6} \text{ and } 1 \le i \le n \\ d & \text{if } i \equiv 3 \pmod{6} \text{ and } 1 \le i \le n \end{cases}$

$$h(wi) = \begin{cases} e & \text{if } i \equiv 4 \pmod{6} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 5 \pmod{6} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 0 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

TABLE 7

Nature of <i>n</i>	$v_h(b$	$v_h(c$	$v_h(d$	v _h (e	v _h (a	v _h (f	$e_h(0)$	$e_h(1)$
))))))		
6 <i>k</i> + 1(<i>k</i> ≥	k +	k	k	k	k + 1	k + 1	6k + 1	6k + 1
1)	1							
6k + 2(k ≥	<i>k</i> +	<i>k</i> +	k	<i>k</i> +	k + 1	k + 1	6k + 2	6k + 2
1)	1	1		1				
6k + 3(k ≥	<i>k</i> +	<i>k</i> +	<i>k</i> +	k	k + 1	k + 1	6k + 3	6k + 3
0)	1	1	1					
6k + 4(k ≥	<i>k</i> +	<i>k</i> +	<i>k</i> +	<i>k</i> +	k + 1	k + 1	6k + 4	6k + 4
0)	1	1	1	1				
6k + 5(k ≥	<i>k</i> +	<i>k</i> +	<i>k</i> +	<i>k</i> +	k + 2	k + 1	6k + 5	6 <i>k</i> + 5
0)	1	1	1	1				
6 <i>k</i> (<i>k</i> ≥ 1)	k	k	k	k	k + 1	k + 1	6k + 6	6k + 6

From TABLE 7,we can easy verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$ Therefore, g is a Group S_3 cordial sum divisor labeling.

Theorem 2.9. The graph obtained by path union of two copies of Globe graph is a Group S_3 cordial sum divisor graph.

Proof. Consider the two copies of Globe graph $Gl^1(n)$ and $Gl^2(n)$ respectively. Let $G_1 = Gl^1(n)$ and $G_2 = Gl^2(n)$. Let $V(G_1) = \{u, v, w_i : 1 \le i \le n\}$ and $E(G_1) = \{[uw_i] \cup [vw_i] : 1 \le i \le n\}$. Let $V(G_2) = \{u_1, v_1, x_i : 1 \le i \le n\}$ and $E(G_2) = \{[u_1x_i] \cup [v_1x_i] : 1 \le i \le n\}$. Now , Let G be the graph obtained by the path union of copies of Global graphs G_1 and G_2 . Here, We add a path of length one from G_1 from G_2 . Then $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E(uu_1)$. Here, |V(G)| = 2n and |E(G)| = 4n + 1. Define $h : V(G) \rightarrow S_3$ as follows $h(u) = g(u_1) = a$ $h(v) = g(v_1) = f$

$$h(wi) = g(xi) = \begin{cases} b & \text{if } i \equiv 1 \pmod{6} \text{ and } 1 \leq i \leq n \\ c & \text{if } i \equiv 2 \pmod{6} \text{ and } 1 \leq i \leq n \\ d & \text{if } i \equiv 3 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

$$h(wi) = g(xi) = \begin{cases} e & \text{if } i \equiv 4 \pmod{6} \text{ and } 1 \leq i \leq n \\ a & \text{if } i \equiv 5 \pmod{6} \text{ and } 1 \leq i \leq n \\ f & \text{if } i \equiv 0 \pmod{6} \text{ and } 1 \leq i \leq n \end{cases}$$

Table 8

Nature of <i>n</i>	$v_h(b)$	$v_h(c)$	$v_h(d)$	$v_h(e)$	$v_h(a)$	$v_h(f)$	<i>e</i> _h (0)	$e_h(1)$
$6k + 1(k \ge$	2 <i>k</i> +	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2k + 2	2 <i>k</i> +	12k + 2	12 <i>k</i> +
1)	2					2		3
6 <i>k</i> + 2(<i>k</i> ≥	2 <i>k</i> +	2k + 2	2 <i>k</i>	2 <i>k</i>	2k + 2	2 <i>k</i> +	12k + 4	12 <i>k</i> +
1)	2					2		5
$6k + 3(k \ge$	2 <i>k</i> +	2k + 2	2 <i>k</i> +	2 <i>k</i>	2k + 2	2 <i>k</i> +	12k + 6	12 <i>k</i> +
0)	2		2			2		7
$6k + 4(k \ge$	2 <i>k</i> +	2k + 2	2 <i>k</i> +	2 <i>k</i> +	2k + 2	2 <i>k</i> +	12k + 8	12 <i>k</i> +
0)	2		2	2		2		9
$6k + 5(k \ge 1)$	2 <i>k</i> +	2k + 2	2 <i>k</i> +	2 <i>k</i> +	2k + 4	2 <i>k</i> +	12 <i>k</i> +	12 <i>k</i> +
0)	2		2	2		2	10	11
$6k(k \ge 1)$	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2 <i>k</i>	2k + 2	2 <i>k</i> +	12 <i>k</i> +	12 <i>k</i> +
						2	12	13

From TABLE 8,we can easily verify that $|v_h(i) - v_h(j)| \le 1$ for every $i, j \in S_3$ and $|e_h(1) - e_h(0)| \le 1$. Therefore, h is a Group S_3 cordial sum divisor labeling.

REFERENCES

- 1. I.Cahit, Cordial graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin., Vol.23, (1987).
- 2. F. Harary, Graph Theory, Addison-wesley, Reading, Mass 1972.
- 3. J. A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin., 21 (2020) # DS6.
- 4. Kala and Chandra, Group S_3 cordial prime labeling of Graphs, Malaya journal of Mathematik., Vol.1, (2019).
- 5. Lourdusamy and Patrick, Sum Divisor Cordial Graphs, Proyecciones journal of mathematics., Volume 35, (2016).